

## Heizpatronen

#### Grundwerte:

| Parameter         | Wert              |
|-------------------|-------------------|
| Abmaße            | 90 x 5,0 x 5,0 mm |
| Beheizter Bereich | Ø 4,0 x 40 mm     |
| T <sub>max</sub>  | 1 000 °C          |

#### Details zu Standard:

#### Beschreibung

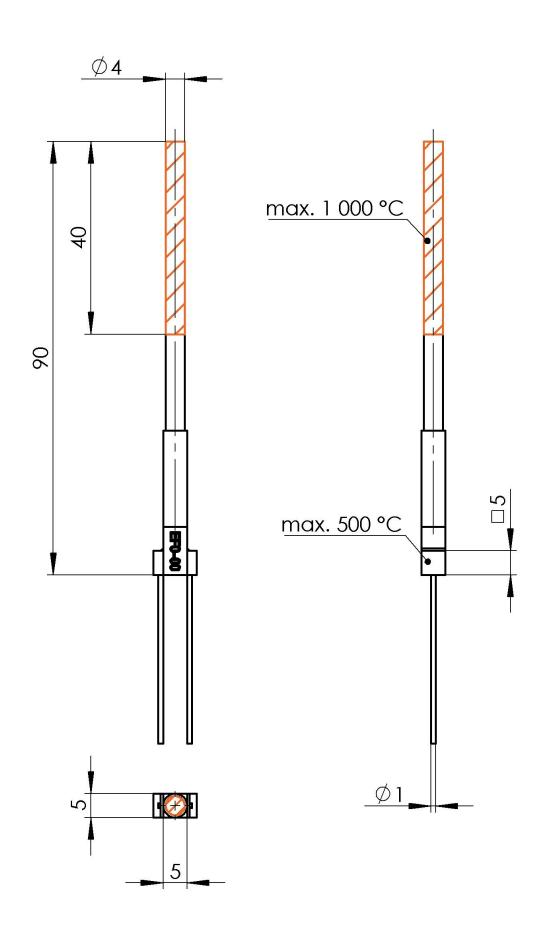
Zylindrische Patronen sind eine häufig verwendete Form von Heizelementen. Meist werden sie in eine auf Passung bearbeitete Bohrung in einem Metallteil eingesetzt, um größere Maschinenteile zu beheizen. Auch Bach RC bietet eine Vielzahl von Heizpatronen an. Gegenüber konventionellen metallischen Heizpatronen zeichnen sich die Keramikheizelemente sowohl durch eine sehr hohe Lebensdauer als auch durch eine sehr hohe (erzielbare) Leistungsdichte (Leistungsabgabe je Oberflächeneinheit) aus. Dadurch kann die Dynamik des Aufheizvorganges verbessert und/oder die Anzahl der verbauten Heizelemente reduziert werden. Maschinenausfallzeiten werden minimiert und so die Produktivität Ihrer Maschinen erhöht. Beim Einbau der keramischen Heizpatronen in Metallwerkzeuge ist die wesentlich geringere Wärmedehnung von Siliziumnitrid gegenüber Metallen zu beachten.

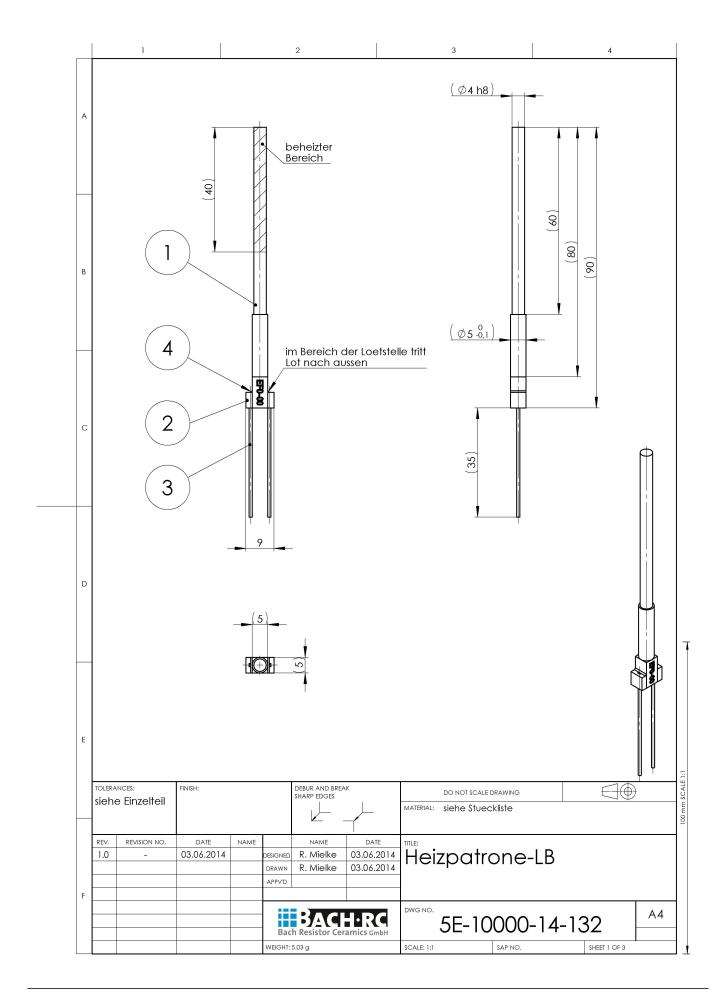
\* Die tatsächliche Leistung ist vom Widerstand, der Temperatur und der Spannung abhängig.

| Parameter          | Wert        |             |  |
|--------------------|-------------|-------------|--|
| Artikelnr.         | HPT 100 048 | HPT 100 066 |  |
| Widerstand @ 20 °C | 105 Ω ±25 % | 50 Ω ±25 %  |  |

### Basismaterial

| Parameter                                                | Einheit                          | Si <sub>3</sub> N <sub>4</sub> |
|----------------------------------------------------------|----------------------------------|--------------------------------|
| max. Temperatur (T <sub>max</sub> )                      | °C                               | 1 000                          |
| Wärmeleitfähigkeit (I)                                   | W/mK                             | 40                             |
| Temperaturschockfestigkeit (ΔT)                          | K                                | 500                            |
| Emissionsgrad (1 100 °C) (ε)                             | -                                | 0,96                           |
| Elastizitätsmodul (E)                                    | GPa                              | 320                            |
| Biegebruchfestigkeit ( $\delta_{BB}$ )                   | MPa                              | 400                            |
| Druckfestigkeit (δ <sub>D</sub> )                        | MPa                              | 2 000                          |
| Wärmeausdehnungskoeffizient (α)                          | 10 <sup>-6</sup> K <sup>-1</sup> | 3                              |
| Dichte (g)                                               | g/cm³                            | 3,21                           |
| Spezifische Wärme (c <sub>p</sub> )                      | J/kgK                            | 750                            |
| Porosität (100 - % t.D.)                                 | %                                | 0                              |
| Kritischer Spannungsintensitätsfaktor (K <sub>Ic</sub> ) | MPa m <sup>½</sup>               | 6                              |
| Weibull - Modul (m)                                      | -                                | 7,9                            |


Die Thermoschockbeständigkeit ist abhängig von der Heizergeometrie.


## Elektrische Eigenschaften

| Parameter               | Einheit      | Si <sub>3</sub> N <sub>4</sub>      |
|-------------------------|--------------|-------------------------------------|
| spezifischer Widerstand | Ωcm          | $5 \cdot 10^{-3} - 5 \cdot 10^{-1}$ |
| Isolationswiderstand    | Ω mm (20 °C) | 10 <sup>13</sup>                    |
| Durchschlagfestigkeit   | kV/mm        | 25                                  |

# Emissionsspektrum

Vollkeramische Heizelemente sind langwellige Infrarotstrahler mit einem Maximum der Emission bei 5 bis 10  $\mu$ m, Strahlungsfaktor  $\epsilon$  > 0,9.



